|                         | 2017 COMBINED REVIEW MEETING POSTER PRESENTATIONS |                                                           |                                                                                                                                                           |                     |  |  |  |
|-------------------------|---------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|--|
| Technology<br>Area      | Poster<br>Number                                  | Organization                                              | Poster Title                                                                                                                                              | Presenter           |  |  |  |
| Computational Materials | 1                                                 | Florida International<br>University                       | The Fundamental Creep Behavior Model of GR.91 Alloy<br>by Integrated Computational Materials Engineering<br>(ICME) Approach                               | Yu Zhong            |  |  |  |
|                         | 2                                                 | Michigan<br>Technological<br>University                   | Development of a Physically-Based Creep Model<br>Incorporating ETA Phase Evolution for Nickel-Base<br>Superalloys                                         | Walter Milligan     |  |  |  |
|                         | 3                                                 | QuesTek Innovations<br>LLC                                | Improved Models of Long Term Creep Behavior of High<br>Performance Structural Alloys for Existing and Advanced<br>Technologies Fossil Energy Power Plants | Jiaodong Gong       |  |  |  |
|                         | 4                                                 | University of Texas at<br>El Paso                         | A Guideline for the Assessment of Uniaxial Creep and Creep-Fatigue Data and Models                                                                        | Jack Chessa         |  |  |  |
|                         | 5                                                 | Ohio State University                                     | ICME for Creep of NI-Base Superalloys in Advanced Ultra-Supercritical Steam Turbines                                                                      | Stephen<br>Niezgoda |  |  |  |
| Sensors & Controls      | 6                                                 | Virginia Polytechnic<br>Institute and State<br>University | Investigation of High Temperature Silica Based Fiber<br>Optic Materials                                                                                   | Gary Pickrell       |  |  |  |
|                         | 7                                                 | Washington State<br>University                            | Raman Spectroscopy for the On-Line Analysis of Oxidation States of Oxygen Carrier Particles                                                               | Hergen Eilers       |  |  |  |
|                         | 8                                                 | University of<br>Pittsburgh                               | Engineering Metal Oxide Nanomaterials for Fiber Optical Sensor Platforms                                                                                  | Peng Chen           |  |  |  |
|                         | 9                                                 | University of Texas at<br>El Paso                         | Additive Manufacturing of Energy Harvesting Material<br>System for Active Wireless Microelectromechanical<br>Systems (MEMS) Sensors                       | Ryan Wicker         |  |  |  |
|                         | 10                                                | NETL - Research and<br>Innovation Center                  | Zirconia-Doped Ceria as Thin Film Gas Sensing Layer for High-Temperature Fossil Energy Applications                                                       | Robert Fryer        |  |  |  |
| Water Management<br>R&D | 11                                                | NETL - Research and<br>Innovation Center                  | R&IC-SEA Water Management Research                                                                                                                        | Erik Shuster        |  |  |  |
|                         | 12                                                | University of Alabama at Birmingham                       | Continuous Water Quality Sensing for Flue Gas Desulfurization Wastewater                                                                                  | Lee Moradi          |  |  |  |
|                         | 13                                                | West Virginia State<br>University                         | Dev. Cost-Effective Biological Removal Technology for Selenium & Nitrate from Flue Gas Desulfurization Wastewater from Existing Power Generating Facility | Sanjaya             |  |  |  |

| Technology<br>Area   | Poster<br>Number | Organization                                              | Poster Title                                                                                                                                                    | Presenter             |
|----------------------|------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Gasification Systems | 14               | University of South<br>Carolina                           | Intermediate Temperature Nano-Structured Ceramic<br>Hollow Fiber Membranes for Oxygen Separation                                                                | Chris Xue             |
|                      | 15               | Virginia Polytechnic<br>Institute and State<br>University | Advancing Coal Catalytic Gasification to Promote Optimum Syngas Production                                                                                      | Francine<br>Battaglia |
|                      | 16               | Gas Technology<br>Institute                               | Production of High-Purity Oxygen via Membrane<br>Contactor with Oxygen Carrier Solutions                                                                        | Shinguang Li          |
|                      | 17               | University of Wyoming                                     | Catalytic PRB Coal-CO <sub>2</sub> Gasification for Fuels and Chemicals with Two Different Types of Syngas and Negative or Low CO <sub>2</sub> Emissions        | Maohong Fan           |
|                      | 18               | Montana State<br>University                               | Increasing the Rate and Extent of Microbial Coal to<br>Methane Conversion through Optimization of Microbial<br>Activity, Thermodynamics, and Reactive Transport | Matthew Fields        |
|                      | 19               | University of Utah                                        | Ceramic Proppant Design for In-Situ Microbially<br>Enhanced Methane Recovery                                                                                    | Taylor Sparks         |
|                      | 20               | Southern Illinois<br>University                           | Optimized Microbial Conversion of Bituminous Coal to<br>Methane for In-Situ and Ex-Situ Applications                                                            | Yanna Liang           |
|                      | 21               | Montana State<br>University                               | Optimization, Scaleup, and Design of Coal-Dependent<br>Methanogenesis in Preparation for In-Situ Field<br>Demonstration                                         | Matthew Fields        |
|                      | 22               | Pennsylvania State<br>University                          | A Scaling Study Of Microbially-Enhanced Methane<br>Production From Coal: Optimizing Nutrient Delivery For<br>Maximized Methane Production                       | Derek Elsworth        |
|                      | 23               | Alstom Power, Inc.                                        | Alstom's Limestone Chemical Looping Gasification Process for High-Hydrogen Syngas Generation?                                                                   | Frederic Vitse        |